Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Nat Commun ; 13(1): 5552, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2036823

ABSTRACT

One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce emergence of antibody resistance. Here we engineer two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) shows increased antigen-binding and virus-neutralizing activities against multiple SARS-CoV-2 variants as well as increased breadth of neutralizing activity compared to the cocktail. X-ray crystallography and cryo-EM reveal distinct binding models for individual cocktail antibodies, and computational simulations suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and multiple variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.


Subject(s)
Antibodies, Bispecific , COVID-19 Drug Treatment , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Immunoglobulin G , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Nat Commun ; 13(1): 4337, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960370

ABSTRACT

We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcription regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (∆3678). The ∆3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The ∆3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the ∆3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the ∆3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter ∆3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that ∆3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antiviral Agents , COVID-19/prevention & control , Cricetinae , Humans , Interferons , Mice , SARS-CoV-2/genetics , Vaccines, Attenuated , Virus Replication
8.
Nature ; 595(7869): 718-723, 2021 07.
Article in English | MEDLINE | ID: covidwho-1253950

ABSTRACT

Resistance represents a major challenge for antibody-based therapy for COVID-191-4. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.


Subject(s)
COVID-19/prevention & control , COVID-19/virology , Immunoglobulin M/administration & dosage , Immunoglobulin M/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Apoptosis Regulatory Proteins/metabolism , COVID-19/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/adverse effects , Immunoglobulin M/therapeutic use , Mice , Mice, Inbred BALB C , Protein Engineering , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , SARS-CoV-2/genetics , COVID-19 Drug Treatment
9.
Nat Protoc ; 16(3): 1761-1784, 2021 03.
Article in English | MEDLINE | ID: covidwho-1054034

ABSTRACT

Reverse genetic systems are a critical tool for studying viruses and identifying countermeasures. In response to the ongoing COVID-19 pandemic, we recently developed an infectious complementary DNA (cDNA) clone for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse genetic system can be used to rapidly engineer viruses with desired mutations to study the virus in vitro and in vivo. Viruses can also be designed for live-attenuated vaccine development and engineered with reporter genes to facilitate serodiagnosis, vaccine evaluation and antiviral screening. Thus, the reverse genetic system of SARS-CoV-2 will be widely used for both basic and translational research. However, due to the large size of the coronavirus genome (~30,000 nucleotides long) and several toxic genomic elements, manipulation of the reverse genetic system of SARS-COV-2 is not a trivial task and requires sophisticated methods. Here, we describe the technical details of how to engineer recombinant SARS-CoV-2. Overall, the process includes six steps: (i) prepare seven plasmids containing SARS-CoV-2 cDNA fragment(s), (ii) prepare high-quality DNA fragments through restriction enzyme digestion of the seven plasmids, (iii) assemble the seven cDNA fragments into a genome-length cDNA, (iv) in vitro transcribe RNA from the genome-length cDNA, (iv) electroporate the genome-length RNA into cells to recover recombinant viruses and (vi) characterize the rescued viruses. This protocol will enable researchers from different research backgrounds to master the use of the reverse genetic system and, consequently, accelerate COVID-19 research.


Subject(s)
Genetic Engineering/methods , Reverse Genetics/methods , SARS-CoV-2/genetics , DNA, Viral/genetics , Genome, Viral/genetics
10.
Nat Commun ; 12(1): 469, 2021 01 20.
Article in English | MEDLINE | ID: covidwho-1039642

ABSTRACT

Antibody cocktails represent a promising approach to prevent SARS-CoV-2 escape. The determinants for selecting antibody combinations and the mechanism that antibody cocktails prevent viral escape remain unclear. We compared the critical residues in the receptor-binding domain (RBD) used by multiple neutralizing antibodies and cocktails and identified a combination of two antibodies CoV2-06 and CoV2-14 for preventing viral escape. The two antibodies simultaneously bind to non-overlapping epitopes and independently compete for receptor binding. SARS-CoV-2 rapidly escapes from individual antibodies by generating resistant mutations in vitro, but it doesn't escape from the cocktail due to stronger mutational constraints on RBD-ACE2 interaction and RBD protein folding requirements. We also identified a conserved neutralizing epitope shared between SARS-CoV-2 and SARS-CoV for antibody CoV2-12. Treatments with CoV2-06 and CoV2-14 individually and in combination confer protection in mice. These findings provide insights for rational selection and mechanistic understanding of antibody cocktails as candidates for treating COVID-19.


Subject(s)
Antibodies, Monoclonal/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Immunoglobulin Fragments/genetics , Immunoglobulin Fragments/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Models, Molecular , Mutation , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
11.
Nature ; 592(7852): 116-121, 2021 04.
Article in English | MEDLINE | ID: covidwho-892040

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genetic Fitness , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Humans , Lung/virology , Male , Mesocricetus/virology , Models, Biological , Nasal Mucosa/virology , Neutralization Tests , Protein Stability , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques , Trachea/virology , Viral Load , Virion/chemistry , Virion/pathogenicity , Virion/physiology , Virus Replication/genetics
12.
Nat Commun ; 11(1): 5214, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-872699

ABSTRACT

A high-throughput platform would greatly facilitate coronavirus disease 2019 (COVID-19) serological testing and antiviral screening. Here we present a high-throughput nanoluciferase severe respiratory syndrome coronavirus 2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. SARS-CoV-2-Nluc can be used to measure neutralizing antibody activity in patient sera within 5 hours, and it produces results in concordance with a plaque reduction neutralization test (PRNT). Additionally, using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2), we show that the assay can be used for antiviral screening. Using the optimized SARS-CoV-2-Nluc assay, we evaluate a panel of antivirals and other anti-infective drugs, and we identify nelfinavir, rupintrivir, and cobicistat as the most selective inhibitors of SARS-CoV-2-Nluc (EC50 0.77 to 2.74 µM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 µM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , High-Throughput Screening Assays/methods , Neutralization Tests/methods , Pneumonia, Viral/diagnosis , A549 Cells , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Luciferases/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
13.
Diagn Microbiol Infect Dis ; 99(2): 115248, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-866639

ABSTRACT

As new tests and technologies advance our understanding and diagnostic capabilities of the severe acute respiratory syndrome coronavirus 2 and the coronavirus disease 2019, they must be appropriately validated to make sure test performance is following manufacturer claims. In this study, we evaluated the Vazyme 2019-nCoV IgG/IgM Detection Kit, which is a lateral flow assay (LFA), by the plaque reduction neutralization test (PRNT) using 100 patient plasma/serum samples. As compared to the PRNT results, the Vazyme LFA had 95.9% sensitivity and 96.1% specificity. Along with the increased need for rapid, effective, and affordable point of care tests to help provide meaningful epidemiological data, we demonstrated that the Vazyme LFA performed well on IgG detection but cannot be judged on the performance of IgM detection using PRNT alone. However, our observation of the low IgM-positive rate supported the poor performance of IgM detection of this LFA which led to the disapproval of its Emergency Use Authorization recently.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/immunology , Viral Plaque Assay/methods , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Point-of-Care Testing
14.
Nat Commun ; 11(1): 4059, 2020 08 13.
Article in English | MEDLINE | ID: covidwho-720832

ABSTRACT

Virus neutralization remains the gold standard for determining antibody efficacy. Therefore, a high-throughput assay to measure SARS-CoV-2 neutralizing antibodies is urgently needed for COVID-19 serodiagnosis, convalescent plasma therapy, and vaccine development. Here, we report on a fluorescence-based SARS-CoV-2 neutralization assay that detects SARS-CoV-2 neutralizing antibodies in COVID-19 patient specimens and yields comparable results to plaque reduction neutralizing assay, the gold standard of serological testing. The fluorescence-based neutralization assay is specific to measure COVID-19 neutralizing antibodies without cross reacting with patient specimens with other viral, bacterial, or parasitic infections. Collectively, our approach offers a rapid platform that can be scaled to screen people for antibody protection from COVID-19, a key parameter necessary to safely reopen local communities.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Viral Vaccines/immunology , Animals , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , High-Throughput Screening Assays/methods , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Serologic Tests/methods , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL